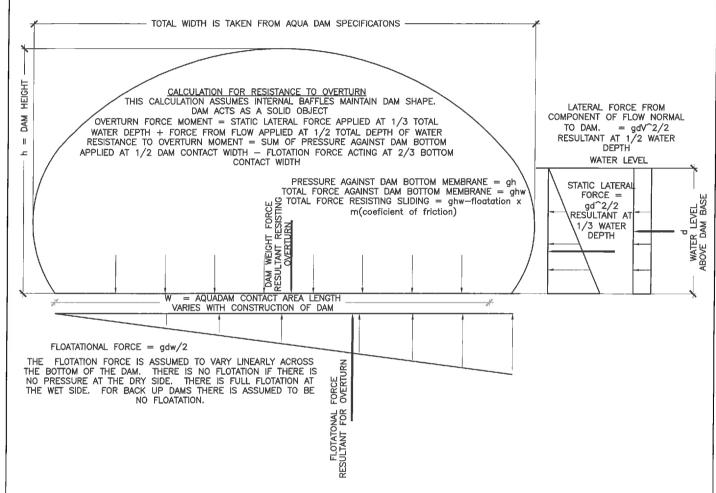
WHITCHURCH ENGINEERING

Building Design

Civil & Structural Engineering


610 9th STREET

FORTUNA, CALIFORNIA 95540

(707)725-6926 FAX (707)725-2959

JOB Palm	Desert 0	Proundwate	r Re	<u>plenishment Proj</u> ect
ELEMENT_	Aquadan	n stability	Rev	1
SHEET NO	1		OF_	2
CALCULAT	ED BY_	omg	DAT	E April 24 2018
CHECKED	RY P	40	IN	WMI 1801

Palm Desert Ground Water Replenishment Project Aquadam stability calculation

12' HEIGHT AQUADAM, 30.83' LAY FLAT, 25' FILLED WIDTH, 22' EST. GROUND CONTACT WIDTH 8' HEIGHT AQUADAM, 21.67' LAY FLAT, 17' FILLED WIDTH, 16' EST. GROUND CONTACT WIDTH

fage 2 of 2 Whitchurch engineering job no.

Date

1,997 1,997

2.85

Aquadam Stability Calculation

Palm Desert Groundwater Replenishment Project

WML1801 April 24 2018

This calculation assumes the Aqua Dam flotational forces act across the dam contact width. The bottom of the basin is at elevation 163'. The retained water depth is 8'. We have been instructed that the water level will be reduced to, and to calculate the water depth at this level. The primary dam height will be 12'. A secondary dam height 8'. The top of the embankment at the fill point is elevation 182'. The soils report, from Brookman Edmonston Engineering, indicates the native soils, that were called out to be used as the fill at the bottom of the basin, are silty sands. The Aquadam is not expected to sink in this material. The coefficient of friction for geotextile fabric against silty sands, from a study by Bosto Geosynthetics, is .84. The coefficient for synthetics against wet concrete can be as low as .35. .30 is the coefficient of friction used in this calculation.

Single dam	
Dam height,	h

Dam height, h
height of retained water, d
Temp of water in dam and being retained assumed similar
Density of water, g
flow rate normal to dam, v
Coeficient of friction, m
Contact width across bottom of dam, w
Lateral force from flow = dgv^2/(2*Gc)
Lateral force from static height = gd^2/2
Total lateral force

Resistance to sliding

Total pressure acting on interior dam membrane contact width, = ghw		
Flotation force from static height = gdw/2		
Net gravitational force creating friction = ghw - gdw/2		
Frictional force resisting lateral movement = m (ghw-gdw/2)		
Factor of safety against lateral displacement = lat. force/frict. force		

Resistance to overturn

Moment imparted by static depth = .3333*d*gd^2/2
Moment imparted by flow = .5*d*dgv^2/2
Moment imparted by flotation = .6666*w*gdw/2
Sum of overturn moments
Resisting vertical moment dam width water weight = .5w*ghw
Factor of safety against overturn = resisting moment/overturn moment
_

Lateral force resistance with second dam as back up

Second dam height, h	
Second dam contact width across bottom of dam,	w
Frictional force resisting lateral movement = ghwm	
Combined frictional force resisting lateral force	
Combined factor of safety against sliding	

12 feet	3.7 Meters
8 feet	2.4 Meters
68 deg F	20 deg C
62.4 lbs/cuft	999.6 Kg/cuMeter
0 feet/second	0.0 Meters/Second
0.3	0.3
22 feet	6.7056 Meters
0 lbs/ft dam length	0.0 N/M dam length

ICCL	0.1000 Mefers
lbs/ft dam length	0.0 N/M dam length
lbs/ft dam length	2,972 N/M dam length
lbs/ft dam length	2,972 N/M dam length

16,474	lbs/ft dam length	24,515	N/M dam length
5,491	lbs/ft dam length	8,172	N/M dam length
10,982	lbs/ft dam length	16,344	N/M dam length
3,295	lbs/ft dam length	4,903.09	N/M dam length
1.65		1.65	_

5,324 ftlbs/ft dam length	2,415 NM/M dam length
0 ftlbs/ft dam length	0 NM/M dam length
80,530 ftlbs/ft dam length	36,531 NM/M dam length
85,854 ftlbs/ft dam length	38,946 NM/M dam length
181,210 ftlbs/ft dam length	82,195 NM/M dam length
2.1	2.1

8 feet	2.4 Meters
16 feet	4.9 Meters
2396 lbs/ft dam length	3,566 N/M dam length
5691 lbs/ft dam length	8,469 N/M dam length

2.85